

Verification of VIRAM1

by Samuel W. Williams

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor David A. Patterson
Research Advisor

(Date)

* * * * * * *

Professor Alberto Sangiovanni-Vincentelli
Second Reader

(Date)

 1

Verification of VIRAM1

Samuel W. Williams

M.S. Report

Abstract

VIRAM1, the first incarnation of the VIRAM ISA, is a 130M transistor, 325mm2, vector processor, with

embedded DRAM designed to produce 12.8GOPS (16b), 12.8GB/s of memory bandwidth at 200MHz, and

consume less than 2W. This report presents the series of verification strategies used to ensure that such a

massive and complex design could be realized, from ISA to tape-out, by four hardware designers, in only

three years. The four methodologies used were: IP blocks for memories and the core, partitioning of the

design into fixed-spec, easy to construct and verify sub-blocks, correct-by-construction design

methodology, and abstraction of tests. This abstraction minimized the coding effort, maximized

readability, allowed for avoidance of known bugs, and allowed a massive number of different code

generations to be generated to explore the instruction sequence space.

 2

Contents
1. Introduction to IRAM and VIRAM1

2. Introduction to the Verification Environment

3. VSIM-P Verification

3.1 Trace Generation and Comparison

 3.2 Random Testing

 3.3 Putting it All Together
4. VSIM-ISA Verification

5. Abstraction and Evolution

5.1 Abstraction and Primitives

5.2 The Initial Testsuite

5.3 Changes in the Project and the Problems Which Arose
6. Basic RTL Verification

7. Partitioning – RTL, IP, and Custom Block Verification

7.1 Custom Block Verification

 7.2 Floating-Point Unit RTL Verification

 7.3 Vector Unit RTL Verification

 7.4 VIRAM1 RTL Verification
8. ISA Evolution and Verification in the Presence of Unspecified Functionality

8.1 Coping with ISA changes

8.2 Vector Unit Issues Which Caused False Failures
9. Back-end Flow Verification

10. Related Work

11. Conclusions

 3

1 Introduction to IRAM and VIRAM1

IRAM is a research project at the University of California at Berkeley that investigated processor

design of a low-power gigascale system-on-a-chip environment. The ever-increasing gap between logic

and DRAM speed has resulted in designers adding prodigious SRAM caches to chip designs. The

alternative solution is to place DRAM on chip resulting in more than eight times the memory per unit area.

This method also allows for a significant memory bandwidth, just as a cache would. Mobile products,

multimedia devices, as well as massively-multiprocessor systems, and compute farms require power

efficiency to maximize battery life or even to help minimize the total cost of ownership. IRAM designs

with a large on-chip DRAM memory would easily fall into one of these categories, necessitating that the

microarchitecture be power-efficient, and furthermore, that the system architecture ideally should be

implicitly power-efficient. These constraints helped focus the project into a series of design refinements

and in turn into a prototype processor.

Keeping with the initial goal of a low-power, high-performance processor to be included in

parallel systems, the IRAM concept design – VIRAM [Koz99] - was based on a vector architecture. To

provide network connectivity, four gigabit links were built into a network interface (NI). To satisfy the

voracious memory bandwidth appetite of a vector processor, a sufficient number of DRAM macros were

embedded on chip. In addition, this guaranteed predictably low latency. In order to avoid having to design

an entire vector processor from the ground up, including all the system and compiler support, it was

partitioned along the core/coprocessor model, where the core would be a FP enabled MIPS compliant IP

core, and the coprocessor would be designed by UCB to perform all vector operations. This view of the

architecture would evolve over time to better match a moving target and to fit available IP and human

resources (averaging only four people) and a limited timeframe. Figure 1 illustrates the basic VIRAM

architecture. The first incarnation of the VIRAM concept, VIRAM1, which chose specific values for

memory (eight 13Mb DRAM banks), computational elements, and Instruction Set Architecture (ISA)

specific issues, was completed in August of 2002 and mask construction began in October. The first wafer

was delivered to Berkeley in February 2003.

MIPS
compliant

core

Vector
coprocessor

(VU)

On-chip
DRAM

Network
Interface

(NI)

Memory Interface Unit

MIPS
compliant
chipset

Off-chip
DRAM

external
devices…

Figure 1 – Initial VIRAM System Architecture Overview
The system-on-a-chip component of a VIRAM system (dotted box) embeds a MIPS core, a
compliant vector coprocessor, on-chip DRAM, on-chip memory-mapped devices, and an
interconnection network.

 4

The coprocessor (vector unit) was designed with “ease of design” and “easy scalability” in mind.

In order to add flexibility, an instruction set architecture (ISA) [Mar00] was constructed around the virtual

processor (VP) model where the n bit functional units are partitioned into virtual processor widths (VPW)

of 64, 32, 16 or possibly 8 bits. To simplify the design, functional units, as well as vector registers were

partitioned into 64b granularities, thus avoiding having a single functional unit or register file provide

access and computation on all elements in a vector register. As a result, a multiplier need only operate on a

single element in vpw64, and four in vpw16. Similarly, a vector register file now contains only 64b

registers. Although not immediately obvious, this is a more implementation-friendly method, as only one

instance, which is a partition of a functional unit, needs to be designed, verified, and implemented. A

functional unit is bit sliced, 64 bits in the final implementation, into instances of these partitions.

Extending this partitioning methodology across multiple functional units and a large vector register file

leads to identical blocks called vector lanes. Within this block, several slices are lumped together.

However, there is still a single centralized control module for decode, pipelining, chaining [HP96],

configuration, address calculation, and memory control. This control module is basically a simplified core

without datapaths or register files. Even without these large structures, it is about the same size because it

controls so much. Figure 2 illustrates the vector unit, which is a MIPS compliant coprocessor. Neither the

maximum vector length nor the widths of the functional units are defined in the ISA. As a result, an

implementation may vary these to find a balance between area and performance. Obviously, both represent

near linear changes to area, but subtle and an implementation specific change in cycle time.

Originally, no separate FPU was required since the core would be floating-point capable.

Unfortunately, by early 2000, it was clear that we would not be able to procure this core, resulting in the

selection of an alternate MIPS ISA core. More over, this new core did not support floating-point

operations. This deficiency necessitated the development of FPU. We decided to use a single precision

floating-point execution unit IP block to minimize the design time. However, this soft IP FPU only

supported computation; it contained no registers, decoding, or interface. Figure 3 shows the architectural

Vector
Control

Vector Lanes (4)

MU0

AU0

AU1

Vector
RF

FU
&

Flag
RF

Crossbars

On-chip
DRAM

8x13Mb

Figure 2 – VIRAM1 Vector Unit
The vector coprocessor in the VIRAM1 system (dotted line) is partitioned into a control
unit, and four vector lanes. Each lane has a 64x256b register file, 2 arithmetic units,
a memory unit, a flag functional unit, and a flag register file.

 5

part of the FPU, which is a module we designed ourselves. Now that the basic architecture of VIRAM1 has

been described, the rest of the paper details the verification flow from software simulators to layout.

2 Introduction to the Verification Environment

The verification work required was originally described as: show that both the vector unit (VU)

and the network interface (NI) are correct. VU verification only pertained to ISA compliance. As a result,

timing verification was included either in the workload of the designer or whoever would run the blocks

through place and route (PnR) tools. The other blocks, DRAM and the core, were IP blocks, and were thus

assumed to be correct. Of course, this simplification did not mean that verification stopped with the VU.

Full-chip verification was also required. The majority of verification for the network interface could be

performed on a standalone environment, since it had no ISA dependence. However, because it is a

memory-mapped device, it still must be included at the top-level verification.

The goals of verification, aside from the obvious goal of producing a correct design, were to

balance the following: testsuite design effort, machine requirements for full chip verification, effective use

of the tools by the RTL designers, and finally, evolvability of the testbench and tools so that it can adapt to

changes. Only one person would be responsible for verification, and tape-out was initially only six months

away. Thus, the testsuite and testbench had to be extremely easy to implement as well as requiring

relatively few CPU days to run. It was the responsibility of the RTL designers to fix their own code after

bugs have been discovered, necessitating the tests be easily readable, and the tools user-friendly and

intuitive. Finally, since it is difficult to foresee every eventuality, the testsuite and tools must be designed

so that they can grow and evolve.

The environment at the beginning of verification included only software simulators. Over time,

this toolbox would grow to include more realistic software simulators, hardware simulators, and formal

Figure 3 – VIRAM1 Floating-Point Unit
The Floating-point coprocessor (dotted line) is attached to the MIPS core, and contains
three major blocks: a soft IP execution unit, a macro-based register file, and an in-
house architectural control RTL block.

FP Execution Unit FPU

Decode
+

Reorder
buffer

FPR
32x32b

MIPS
Core

DIV

MUL

ABS

ADD

F2I

I2F

CMP

 6

verification tools. The original software simulators were vsim-isa (VIRAM ISA simulator) and vsim-p

[Fro00] (VIRAM performance simulator). The performance simulator expanded on the basic (one

“cycle”/one instruction) functionality of the ISA simulator by attempting to accurately simulate the actual

VIRAM1 microarchitecture. Initially it shared no common code with the ISA simulator, and both

simulators had apparently been used to run small kernels leading to the assumption that they were

functionally correct. Eventually another software simulator had to be written to reflect changing

microarchitecture, memory organization, ISA issues, and the need to model kernel mode activity. Some

hardware simulators were based on VCS, and others using Spice or TimeMill or eventually Nanosim. VCS

simulators eventually included the integer unit (multiply, add, shift, round, and saturate) testbenches, the

crossbar, the MIPS core, the MIPS core with a FPU, the MIPS core with the vector unit, behavioral

crossbar, behavioral register files, and memory, and finally the full VIRAM1 environment. Spice and

TimeMill testbenches included benches for the vector register file (RF), the crossbar (XBAR), and the

integer unit modules (IU).

In August of 1999, VIRAM1 was organized as follows. The core, which we planned to use, was

from SandCraft, and although it was to include floating-point support, it was to be full custom, and had not

yet been delivered. The VU was being designed in-house (RTL took more than a year to write) and

included full custom integer units, which were under construction, and a full custom crossbar, also under

construction. VIRAM1 tape-out had been initially set for January of 2000. The full custom vector register

file, although part of the vector unit, was to be designed by an external source. IBM provided DRAM IP,

and the NI was to be written in-house.

With the initial environment and status described, the rest of the paper follows the development of

the final version of the VIRAM1 verification testbenches and flow, as well as illustrating the

misconceptions and catastrophes that required major changes in the approaches used. The following

sections of the paper are formatted as a cycle of: concept for verification, description of the method, its

good points, and finally why it fails to be a viable verification method.

3 VSIM-P Verification

As previously stated, the initial verification timeframe was about six months. This necessitated a

quick and dirty method. The ISA simulator was assumed to be correct, but it presented a large problem for

verifying a temporally complex out-of-order system. The hope was to use the touted cycle-accurate

performance simulator to verify the correctness of the RTL via trace comparison. Since the performance

simulator (vsim-p) did not share any common code with vsim-isa, or any code with the RTL, it needed to be

verified before RTL verification could proceed. In this method (the first of many), vsim-p was first verified

by comparing it to the “known to be correct” vsim-isa, and then would be used to verify the RTL.

Verifying vsim-p was not an exact science since simple trace comparison was not applicable. Instructions

 7

can commit out-of-order. When coupled with the fact that unreflected latencies are included, the two traces

might look very different. A formal method was not used for several reasons, paramount of which was the

time to develop such a strategy.

3.1 Trace Generation and Comparison
Verification of vsim-p is checking functional equivalence to vsim-isa. Both simulators were

modified to produce a verification trace and a trace comparator was written. This trace was slightly

different than the original trace provided by the simulator framework. In effect, the comparator is an out-

of-order ISA comparator. That is, it checks to ensure that vsim-p is consistent with vsim-isa on a per

element basis. This verification method is just correct by association, so it is necessary to show that at least

vsim-isa has some basic functionality. Accordingly, a small set of directed tests were written and

simulated.

An example will likely make these concepts clear. Figure 4 shows a series of instructions from a

detailed ISA level trace. In this case, initially, vector length is set to nine. This is followed by a vfset

instruction, which is used to set vfmask0 (register 0 of the vector flag register file). It was already set for

vl=mvl. It should be noted, that there is one flag bit for each VP. The simulator supports 8b VPW’s, and

thus with a 2048 bit vector register (default for VIRAM), flags are 256 bits (2048/8=256). VIRAM1,

however, does not support such a virtual processor width, and thus simulators present vector flags with

twice as many bits as hardware simulators. Finally, a vector add is executed. It is clear which elements

were changed, and that integer overflow occurred in three 64 bit elements. Address translation is used to

determine the physical addresses in memory, which in this case, were on-chip DRAM. The instructions are

then fetched, decoded, and executed in a single iteration. This information, and similar traces from other

simulators, must be parsed and compared by the comparator.

In this case, all software simulators would produce code in this order, but independent instructions

might occur out-of-order. For example, it is possible for the scalar core to run ahead of the vector unit, thus

a vector add followed by a scalar add in program order could be reversed in execution order and therefore

in trace order. In a case more critical to correct verification, two mutually independent vector add’s could

execute out of order in the presence of the multiple integer units that VIRAM1 has. Furthermore, since

there is no reorder buffer in the vector unit, instructions commit in element groups leading to multi-cycle

commit. Thus it is clear that for a design like this, not only must traces be processed on a per register basis,

but also a per element basis. In figure 5, two vector add instructions each write elements on each of four

cycles to the same register, via chaining, followed by a write from an add in the scalar core. The second

instruction presumably uses a conditional execution mask so that it only writes 14 elements.

 8

 1110 TLB 0x00000000000107e4 --> 0x00000000000107e4 0x00000000000107e4

 1110 LOAD [0x00000000000107e4-->(on-chip-dram)0x00000000000107e4] 0x48

 1110 LOAD [0x00000000000107e5-->(on-chip-dram)0x00000000000107e5] 0xc4

 1110 LOAD [0x00000000000107e6-->(on-chip-dram)0x00000000000107e6] 0x00

 1110 LOAD [0x00000000000107e7-->(on-chip-dram)0x00000000000107e7] 0x00

 1111 INST 0x00000000000107e4 48c40000 ctc2 a0,vl

 1111 WRITE vc32 vl 0 0x00000009

 1111 WRITE pc 0x00000000000107e8

 1112 TLB 0x00000000000107ec --> 0x00000000000107ec 0x00000000000107ec

 1112 LOAD [0x00000000000107ec-->(on-chip-dram)0x00000000000107ec] 0x4a

 1112 LOAD [0x00000000000107ed-->(on-chip-dram)0x00000000000107ed] 0xc0

 1112 LOAD [0x00000000000107ee-->(on-chip-dram)0x00000000000107ee] 0x00

 1112 LOAD [0x00000000000107ef-->(on-chip-dram)0x00000000000107ef] 0x21

 1113 INST 0x00000000000107ec 4ac00021 vfset vfmask0

 1113 WRITE pc 0x00000000000107f0

 1113 WRITE vf vfmask0 0 1111111111111111 1111111111111111 1111111111111111 1111111111111111

 1111111111111111 1111111111111111 1111111111111111 1111111111111111

 1111111111111111 1111111111111111 1111111111111111 1111111111111111

 1111111111111111 1111111111111111 1111111111111111 1111111111111111

 1113 TLB 0x00000000000107f0 --> 0x00000000000107f0 0x00000000000107f0

 1113 LOAD [0x00000000000107f0-->(on-chip-dram)0x00000000000107f0] 0x4a

 1113 LOAD [0x00000000000107f1-->(on-chip-dram)0x00000000000107f1] 0x06

 1113 LOAD [0x00000000000107f2-->(on-chip-dram)0x00000000000107f2] 0x3a

 1113 LOAD [0x00000000000107f3-->(on-chip-dram)0x00000000000107f3] 0x00

 1114 INST 0x00000000000107f0 4a063a00 vadd.vv $vr8,$vr7,$vr6

 1114 WRITE vr $vr8 8 0 3 fffffffffffffffe

 1114 WRITE vr $vr8 8 1 3 8000000000000000

 1114 WRITE vr $vr8 8 2 3 7ffffffffffffffe

 1114 WRITE vr $vr8 8 3 3 8000000000000000

 1114 WRITE vr $vr8 8 4 3 0000000000000002

 1114 WRITE vr $vr8 8 5 3 0000000000000000

 1114 WRITE vr $vr8 8 6 3 7ffffffffffffffe

 1114 WRITE vr $vr8 8 7 3 0000000000000000

 1114 WRITE vr $vr8 8 8 3 fffffffffffffffe

 1114 WRITE pc 0x00000000000107f4

 1114 WRITE vf vfe0.F 8 1111111111111111 0000000011111111 0000000000000000 0000000000000000

 0000000000000000 0000000000000000 0000000000000000 0000000000000000

 0000000000000000 0000000000000000 0000000000000000 0000000000000000

 0000000000000000 0000000000000000 0000000000000000 0000000000000000

 1114 WRITE vr $vr8 8 0xfffffffffffffffe 0x8000000000000000 0x7ffffffffffffffe 0x8000000000000000

 0x0000000000000002 0x0000000000000000 0x7ffffffffffffffe 0x0000000000000000

 0xfffffffffffffffe 0x0000b13500004363 0x000069330000070b 0x000082a70000979d

 0x0000fee50000a891 0x0000762300004eb1 0x0000c06f0000c27d 0x0000673500009c97

 0x0000c5090000ba9b 0x0000e8cd00003873 0x0000cd1300002363 0x00001bad000021f3

 0x0000695300009d09 0x0000746b0000641f 0x00005dab0000b01f 0x0000e8df00002db5

 0x0000774f0000b9a7 0x00007d2700001701 0x00008e7d000080ab 0x0000a8150000ed33

 0x0000ebb900008d5b 0x0000872b0000db3d 0x0000c8810000d99b 0x00005a1100004821

Figure 4 – ISA (vsim) Trace example
The first column in the trace represents the instruction count. The keyword, INST,
represents a newly decoded instruction. The WRITE keyword signifies a write to memory or
a register file. Vector registers appear as a sequence of 32 double words (vpw64
elements 0 thru 31), and flag registers appear as a sequence of 16 half words (expressed
in binary). From this flood of information, architectural state can be derived.

 9

ISA level trace:
1 VADD1 VR[0] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 VADD2 VR[0] = 15 14 13 12 11 10 9 8 7 6 5 4 3 2 - -
3 ADD R[0] = 5
note: time is vertical

Cycle accurate trace:
Cycle Scalar AU0 write port AU1 write port
1 R[0] = 5 - -
. - - -
. - - -
. - - -
n - VR[0][0: 3] = 0 1 2 3 -
n+1 - VR[0][4: 7] = 4 5 6 7 VR[0][0: 3] = 15 14 13 12
n+2 - VR[0][8:11] = 8 9 10 11 VR[0][4: 7] = 11 10 9 8
n+3 - VR[0][12:15] = 12 13 14 15 VR[0][8:11] = 7 6 5 4
n+4 - - VR[0][12:13] = 3 2
note: time is vertical

Transformed ISA trace Transformed cycle accurate trace
R[0] = 5, R[0] = 5,
VR[0][0] = 0,15, VR[0][0] = 0,15,
VR[0][1] = 1,14, VR[0][1] = 1,14,
VR[0][2] = 2,13, VR[0][2] = 2,13,
VR[0][3] = 3,12, VR[0][3] = 3,12,
VR[0][4] = 4,11, VR[0][4] = 4,11,
VR[0][5] = 5,10, VR[0][5] = 5,10,
VR[0][6] = 6, 9, VR[0][6] = 6, 9,
VR[0][7] = 7, 8, VR[0][7] = 7, 8,
VR[0][8] = 8, 7, VR[0][8] = 8, 7,
VR[0][9] = 9, 6, VR[0][9] = 9, 6,
VR[0][10] = 10, 5, VR[0][10] = 10, 5,
VR[0][11] = 11, 4, VR[0][11] = 11, 4,
VR[0][12] = 12, 3, VR[0][12] = 12, 3,
VR[0][13] = 13, 2, VR[0][13] = 13, 2,
VR[0][14] = 14, VR[0][14] = 14,
VR[0][15] = 15, VR[0][15] = 15,
note: time is horizontal, and element is vertical

Figure 5 – Multicycle Out-of-Order Commit Trace Comparison
This figure details 4 views of trace comparison: ISA, cycle accurate, and transformations
of those two into an internal representation. Transformation can change a very complex
problem into string comparison on thousands of strings.

At this point it is clear that after the element group transformation, all that is required is to traverse

the list of comparable elements and examine their result traces. Simple string comparison can be

performed to determine if an element in the cycle-accurate domain is consistent with the ISA level domain.

With the addition of instruction and simulation time, it is not too difficult to determine and report the exact

point at which a failure occurred. This additional check was performed and was found to be extremely

beneficial by those who debugged various blocks.

3.2 Random Testing
Given the impending deadline, it was necessary to expedite verification time, so a relatively

simple random test generator (RTG) was written. The RTG is a one-pass code generator. It does not

simulate any instructions, since it would be necessary to verify its functionality in addition to that of vsim-p

and vsim-isa. To make it more configurable, each class of instructions was given a probability to be

generated. This probabilistic code generation scheme also applied to primitives - collections of

instructions, which perform some operation or test an important sequence/combination. In addition there

were configuration variables to allow certain types of exceptions, for example arithmetic (vARI), illegal

use of instruction (vIUI), or invalid vector length (vIVL). Setting these variables did not guarantee that

 10

these exceptions would be raised, but instead removed any guards that prevented them from occurring.

Where an arithmetic exception can be avoided by clearing the exception enables, an IUI or IVL exception

requires keeping track of some of the most critical vector control registers such as VL and VPW. All of

these configuration variables could be included in a file, which could be passed to the generator. A simple

script was written to run the random test generator, to run both simulators on the produced code, and finally

to run the trace compactor to determine whether or not the performance simulator had failed. The script

would then repeat this process until it had found ten failing tests. The configuration variables are detailed

in Table 1.

WEIGHTS CONTROLS

VLD_WEIGHT Relative weight for vector load

(all forms)

 MAIN_INSTR Number of primitives

VINT_WEIGHT vector integer SUB_INSTR Primitives in a subroutine

VFP_WEIGHT Vector floating-point weight SUN_IN_SUB Allow subroutines to call

other subroutines

VCVT_WEIGHT Vector convert weight ALLOW_IUI Illegal use of Instruction

VST_WEIGHT Vector store (all forms) ALLOW_ADA Address alignment

LD_WEIGHT Scalar Load (all forms) ALLOW_ARITH Arithmetic

ST_WEIGHT Scalar Store (all forms) ALLOW_IVL Invalid vector length

FORS_WEIGHT For-loop start weight VSYNC_LEVEL 0 = never

1 = best guess

2 = always

FORE_WEIGHT For-loop end weight (must be

greater than start)

 DEBUG_LEVEL Allows debug information to

be commented to program

IFES_WEIGHT If-then-else start weight MIT_DP Switch between original FPU

spec and the actual datapath

from MIT

IFEE_WEIGHT If-then-else end weight ALLOW_CoPinBDS Allow for coprocessor

instructions in a branch

delay slot

JSR_WEIGHT Jump subroutine weight NUMBER_OF_VRs Number of vector registers

CPLX_WEIGHT Complex primitive weight NUMBER_OF_VSs Number of vector scalar

VCVS_WEIGHT Vector control / vector scalar NUMBER_OF_FPRs Number of floating-point

registers

VF_WEIGHT Vector flag processing

FP_WEIGHT Scalar floating-point

CHAIN_WEIGHT Chaining primitive (select

source read class, destination

write class, instructions from

each class, a dependent

register, and fill a number of

intervening cycles)

Table 1 – Random Test Generator Parameters
This table details the most often used configuration variables parsed by the random test

generator. There are three basic classes of variables: weights, switches, and

architectural configurations. Weights are designed so that the probability of generating

a primitive of the corresponding class is equal to the weight of the primitive divided by

the sum of weights of all primitives.

 11

3.3 Putting it All Together
Figure 6 illustrates the resulting design flow. The abstractions of the processor, in the form of

software simulators that model the ISA and predicted performance, are each executed using either

handwritten tests or random tests. For the initial runs, traces were visually inspected to ensure that the ISA

simulator was correct. After basic functionality was confirmed, random test generation and trace

comparison was used exclusively.

Almost every failure from this method was due to a bug in the performance simulator. The bugs

varied from simple functionality and computation, to severe hazard violations, to causing the simulator to

crash. The test code was not bad or poorly written, but was randomly generated code that adhered to the

programming semantics set forth by the ISA. In some ways this was good, since running handwritten code,

designed for kernels, on the simulators is not a particularly thorough verification method. This failing was

obvious, since other designers had run many kernels without incident. In many ways running a random test

generator is very useful in catching non-intuitive bugs. Getting complaints like “I would never write code

like that” is not necessarily bad if the code is still valid and adheres to the programming semantics, and it is

quite useful if it actually finds bugs.

More troubling was the fact that not only did the performance simulator have bugs, but so did the

ISA simulator. Unfortunately, these bugs were primarily functionality bugs. It was clear that the ISA

simulator had not been verified to any extent, and the only reason any bugs were found was that the

functionality code was written by two different people, and thus there was a good chance that at least one

of them got the code right. All of the functionality issues were seen in the instructions or configurations

not often used by developers who wrote relatively simple code.

Eventually, in order to avoid many common bugs, a common set of libraries was written for both

simulators to use. This code reuse of course ensured that they would always both produce the same results,

simulate and
generate trace

handwritten
tests

vsim-isa

vsim-p

Trace_comparator
pass/fail?

simulate and
generate trace

random
tests

Random Test
Generator +

Control Script

Figure 6 – Initial test flow
Simulator source (left) is compiled and executed using stimulus in the form of
assembly language programs (right). Each simulator produces a trace. They are
compared to determine whether or not the performance simulator is consistent with the
ISA.

 12

based on functionality, but it did not guarantee that both simulators would be correct. As a result, the

random test regressions stopped finding comparison bugs, but continued to find major failings due to

chaining, segmentation faults, or assertion checks in the performance simulator.

 The use of a common library in conjunction with the already existent ISA bugs was the death

knell for this method. The execution of vsim-p should always be same as vsim-isa, but they might both be

wrong – and ever-present bugs in vsim-p exacerbated the problem. It was clear that if verification would

ever proceed to RTL, it would be necessary to ensure that, from the ground up, each abstraction level or

representation of the architecture (ISA/Performance/RTL/gate) was correct.

4 VSIM-ISA Verification

The second method applied to verification of the chip attempts to address the major shortcomings

of the first (simple trace comparison) by adding another verification step, vsim-isa verification. Since the

ISA level simulator is the lowest level (closest to the ISA document), there is nothing to compare against

but the document itself. A possible method would be to use equivalence checking to prove that the

equations found in the document are identical to the code in the simulator. This did not address the need to

prove that the higher levels of the design also conformed to the ISA without having to rely on associativity

and trace comparison. Furthermore, equivalence checking could neither be used to prove that the ISA

document was actually correct, nor be implemented in the time allotted.

The solution chosen was to write an extensive set of self-checking programs, which would start

from trivial pieces of code and evolve into extremely intricate and thorough programs. Each test would

contain code to determine whether or not the results it produced through computation were what would be

produced based on the algorithms presented in the ISA document. A final pass/fail value would be

produced as an exit code that would allow the verification engineer to know whether or not the simulator

was working correctly. The beauty of this approach is that these tests could also be run directly and

independently on the performance simulator and the RTL simulators without having to rely on trace

comparison. Trace comparison, however, could still be used as an added measure of confidence. Figure 7

illustrates the basics of this method.

Each of the initial tests was written in assembly language and designed to test only a small piece

of the ISA (a single instruction initially). As tests became more complex, the time required to write tests

skyrocketed. This severe time consumption in conjunction with the immensity of the ISA and with the fact

that handcrafted assembly language tests would need to be completely rewritten in the event of ISA

changes, necessitated refinement of this verification strategy. Some facilitation method was required to

ensure that this step could be completed in a timely manner and still allow for growth and evolution of the

budding testsuite.

 13

5 Abstraction and Evolution

The third method, which initially seemed only to be a refinement of the previous method, grew

rapidly and formed the basis for all ISA level verification for the design. In this method, tests were written

in a language of test primitives, and a translator was used to generate assembly language appropriate for the

current ISA, test conditions, and so forth. Once the now self-checking assembly language had been

produced, it was run on the various simulators, and the simulator traces were also compared to determine

which fail and where.

5.1 Abstraction and Primitives
These test primitives included not only plain assembly language, but also initialization

instructions, test instructions, macroinstructions, configuration variables, custom kernel configuration, self-

generating code (written in C), and test restrictions. Plain assembly language was included to ensure that

tests would contain exactly the instruction sequence to be tested. Thus, unlike a compiler, the writer is

guaranteed that the code desired for verification is generated. All other components of a self-checking test

were greatly abstracted to expedite coding time, as well as allowing for mapping to any desired set of

instructions capable of performing that operation.

This freedom to map to any instruction leads to another concept, software modes. These modes

dictate control signals to the translator on how to map certain instructions, as well as global configuration

parameters for a test. As a result, a “test” is actually more like a superposition of several variants of

Simulate,
self-check, and
generate trace

handwritten
self-checking

tests

vsim-isa

vsim-p

Trace_comparator

Simulate,
self-check, and
generate trace

Pass iff: 1. vsim-isa self-check passes
2. vsim-p self-check passes
3. trace compare passes

Figure 7 – Self-checking test flow
This verification flow adds an additional step to that seen in Figure 6. Each test
now includes code to test the result of various instruction sequences to determine if
the simulator produced the correct result. If not, the test will force the simulator
(through test code) to produce an exit code that signals an error.

 14

assembly language code, compressed down to less than the length of any single program, and selected by

the mode. This means it is possible for a few dozen lines of test code to be mapped to thousands of

different programs, each with hundreds of lines of code. Thus only one test for a specific code snippet had

to be written, and all variations could be automatically generated, thus greatly facilitating the work

required. Thousands of short tests could be written and thousands of variations could be generated for each

instead of writing a million longer pieces of code.

An example might be useful in showing the flexibility of this concept. Let’s look at an

initialization construct for which we wish to place the 64b values 0,1,2,3 into vector register 0. The test

level code would look like:

[INIT] VR:0 dword 0 1 2 3

However, a single parameter passed to the code generator would allow this test code to be mapped to

assembly language via any of the following methods:

1. A vector load loading the first four elements from on-chip memory

2. Looping 4 times on: scalar load, move to cop2, and vector insert to increasing indexes

3. Looping 4 times on: scalar load immediate, move to cop2, and vector insert to increasing

indexes

4. Looping 4 times on: clearing all elements up to vector length using a vector-scalar and, a

scalar load immediate, a move to cop2, a vector-scalar or, and decreasing vector length

The RTL designer would know that these methods exist. In conjunction with his knowledge of which

functional units were working, he could select the appropriate code generation method, and proceed to

testing another functional unit potentially bypassing broken units.

Another concept included was that of register variables. For example, instead of specifying $vr1,

One could specify $vr[X] and the script would choose a value at random for [X]. Although this works well

for most instructions, some instructions have restrictions (vIUI) on which registers can be used. Thus it

was necessary to introduce restrictions such as “[X] ne [Y]” and so forth. This concept was overly

cumbersome on larger programs and the feature was only used in a couple of simple tests.

In order to consolidate all the work necessary to translate test code, generate assembly language,

configure and run all simulators, and finally to determine failure locations, an all-encompassing script was

written in PERL. This was called the verify script: verify.execute.pl, Figure 8 shows its general

functionality and Figure 9 details its position in the overall verification flow.

 15

Traces

Self-checking
test

(.test file)

Code Generation
self-generating tests &
code generated via vcc

Figure 8 – verify.execute.pl script
This figures details only the flow of data through the translator script. First, a
self-checking test (top left) is processed and translated into an intermediate form.
Self-generating tests produce C code, which is compiled, executed, and redirected.
The intermediate form, common in most tests, is then mapped to assembly language
constructs and merged with code from self-generating tests. In addition, C code can
be passed to vcc (the vector c compiler) for compilation and inclusion within the
final assembly program. The assembly language program is then run on any specified
software simulator (producing traces, and memory images, self-checking results). The
memory images are then used as stimulus for any specified RTL build. This simulation
produces more traces and self-checking results. All traces are compared to ensure all
simulators are consistent with each other. Finally, all self-checking results are
ANDed with the trace comparison result to determine a final pass/fail condition.
(lower right)

test.c

compile, execute, redirect
generate assembly language via
cout, and generate binaries
from vcc

Intermediate
form

Code Mapping
1. Code remapping
2. Address remapping
 (move off chip)
3. Custom Boot Kernel
 generation
4. JTAG driver
 generation
5. Simulator config files

Assembly (.s)

Run all specified software simulators
(i.e. vsim-isa, vsim-p, etc…)
produce traces
produce memory images (after assembly)
produce self-check exit code

Memory images

For RTL simulation (written when RTL became available)
1. process images, and config infor
2. run RTL simulators
3, produce trace
4. produce self-check exit code

Trace comparison
1. break vector register writes into 16b elements
2. break vector flag writes into 4b elements.
3. ignore MIPS
4. unique queue for each simulator AND for each register
5. dequeue and compare for each register
 (all traces must match order/values for each register)

Traces

Pass Iff
1. All simulators self-check
2. All traces are consistent

Binary from vcc

 16

In addition to the basic functionality, the test file format included support for I/O operations

allowing for testing of the network interface and JTAG/VTAP ports. These additional constructs weren’t

used except for a few specific tests that were used to verify the functionality of modules like the test access

port in the vector unit.

5.2 The Initial Testsuite
Once the test language translator in the verify script and language semantics were reasonably

stable, a thorough testsuite could be written. Since at this time we were still planning on using the

Sandcraft core, which being an IP block should have already been verified, there was no need to write

scalar tests (either integer or floating-point). Nevertheless, the testsuite for the vector unit, which

comprises more than 80% of the logic of the chip, was a daunting task.

 The testsuite was initially partitioned into several smaller testsuites whose statistics are detailed in

Table 2. This partitioning allowed both the verification engineer and the RTL writer to check off

functionality one step at a time, instead of having to initially deal with programs that required several major

functional units to work correctly. It should be noted that since there is a mapping step during translation,

verify.execute.pl

Self-check
testsuite

vsim-isa

vsim-p

Self-checking
random tests

Random Test
Generator +

Control Script

Figure 9 – Verification Flow Using The Verify Script
The verification script from the previous example can be condenced to a single node in
the verification flow graph. It takes tests and simulators, and produces a pass/fail
condition. This greatly simplifies the work required by a designer to test a change
made to a RTL block or simulator.

Pass/Fail on self-check/trace comparison

verify.execute.pl

random
tests

 17

vector initialization statements, which most efficiently can be written with vector load instructions, can be

replaced with a slower process of using scalar loads and vector insert instructions, thus ensuring that only

the vector arithmetic block is being exercised.

There were some cases where trying to express certain instruction combinations was overly

complicated in the semantics of the test file format. Furthermore, there had been enough bugs to

necessitate very thorough and complete testsuites for these instruction classes. These testsuites were

generated using a very small test generator written in C. These self-checking test generators were easy to

write, allowed coverage of most critical cases, saved significant coding time, and all in all were very useful

in verification. The test generators could have been folded into the verify script through the C code section.

However, the RTL designers typically found it useful to have assembly-like test level programs in lieu of

an extremely complex test level language program or even a C generator. Writing every test in C would

have complicated and sacrificed some of the mapping capabilities of the verify script.

TestSuite Description Tests Test Code Lines

Vector/Basic ISA perspective of the simplest tests 12 216

Vector/Arithmetic Vector integer arithmetic tests 193 18261

Vector/LoadStore All forms of vector load and store tests (unit

stride, stride, indexed)

557 64145

Vector/Processing* Vector processing tests (insert, extract,

half, butterfly

495 36214

Vector/FlagProcessing* Logical, pop, 8 at a time 514 32659

Vector/Misc To/from control/scalar, vsatvl 12 242

Vector/Exceptions Test the vector exceptions and different

conditions they arise under

128 9112

 1,911 160,849

Table 2 – Initial Testsuite
This table details the original self-checking testsuites. It should be noted that Test
code is an abstraction from assembly language. As such, each of the thousands of modes
for each test typically had ten times as many lines of assembly language. Although Test
Code is often unique, generated assembly language rarely is.

*these testsuites included some generated tests totaling about 60,000 lines.

It took about a month to write and debug these vector tests on the ISA simulator. Since the

performance simulator now shared a common library with the ISA simulator, bugs fixed in the ISA

simulator were fixed in the performance simulator as soon as it was recompiled. However, there were still

plenty of other bugs in the performance simulator that were being found.

It also quickly became clear that the ISA simulators had several shortcomings, the first of which

was the lack of any kernel mode support. Thus trying to run the Vector/Exception tests caused the

simulator to terminate instead of jumping to the appropriate exception vector. This lead to the memorable

“what do you mean its not supported” response that would become all too familiar when dealing with

various simulators and representations of the design.

 18

By the spring of 2000, it became clear that we would not be using the Sandcraft core. As a result,

we needed not only a new core, for which we decided on a MIPS M5KC, but also a FPU, part of which we

designed, and the remainder of which came from MIT. Of course, we also needed testsuites for both.

Given the constant bugs in the ISA simulator coupled with the impending task of RTL simulations, it was

decided to simply write a whole new ISA simulator designed to mimic the functionality of the hardware as

closely as possible (ignoring timing). Thus it would accurately represent the ISA based on the MIPS core,

the FPU, and would include full kernel mode support.

It took some time to bring the new simulator, vsim, up to speed, and it required several new

testsuites (detailed in Table 3) to verify it, but once it was verified, it has remained virtually untouched,

even in the presence of RTL verification. Floating-point tests were assumed to be unnecessary since the

MIT execution unit was believed to be correct.

TestSuite Tests Lines of Test Code

Vector/FloatingPoint 42 2561

FloatingPoint/Arithmetic 18 891

FloatingPoint/Arithmetic.with.NaNs 10 520

FloatingPoint/Exceptions 43 2095

FloatingPoint/LoadStore 4 238

FloatingPoint/uKernel 10 1151

uKernel 46 9953

TLB/Exceptions 50 2989

TLB/Instructions 6 179

TLB/uKernel.generated.stride 9 4722

TLB/uKernel.generated.unitStride 3 534

TLB/uKernel.old 17 6740

 258 32,573

Table 3 – Additional Testsuites
This table details additional floating-point and micro kernel self-checking testsuites.

5.3 Changes in the Project and the Problems Which Arose
In the summer of 2000, the performance simulator writer graduated, leaving the performance

simulator unmaintained. This meant that neither the current unfixed bugs, nor any new ones found, could

be fixed. Week by week the performance simulator fell more and more behind as changes were made to

the ISA as well as the microarchitecture. As a result it ended up being utterly useless for verification and

was discarded.

The other major shift was the departure from the high-end computing arena in favor of the

embedded arena. Some of these changes are only visible in the microarchitecture (such as the removal of 4

of the vector multipliers), but others, such as only supporting single precision floating-point computation,

required changes to the ISA, simulators, and RTL. The other change dictated by this shift was the removal

of the NI. In the end this was a much more moderate change, as tests were simply not run, as opposed to

having to make modifications or changing either simulators or RTL.

 19

Overall, this verification method was highly successful, and adapted well to the slight changes in

the ISA and the loss of the performance simulator. The flexibility of the verification script is based on the

abstraction of code snippets into the test file format, which means only the code mapper needed to be

changed, not the individual tests, to compensate for minor changes to the ISA. Similarly, the abstraction

and reduction in coding significantly facilitates verification effort by allowing more widely varied tests to

be written in a shorter time. On the downside, self-checking data (not code) had to be either written by

hand through knowledge of the ISA, or generated by a program with knowledge of the ISA. This meant

that tests could be wrong (proven so by ISA simulation), but also, that the ISA could be wrong. By the end

of the summer of 2000, the new ISA simulator had been fully verified, and verification was poised to move

onto RTL as soon as it was deemed ready.

6 Basic RTL Verification

More than six months after the originally scheduled tape-out, the major RTL blocks neared

completion. Additionally, the MIPS core RTL was delivered. It was necessary, however, to perform some

basic verification on these blocks individually to fix all the trivial bugs in parallel. Since the FPU

instantiated the MIT execution unit IP block, which was tied directly to the IBM SA27E [IBM00] standard

cell library as well as IBM designWare components, its verification could not be started until we received

the design kit from IBM.

While waiting for the IBM components used by the FPU, its designer created a small testbench

that issues instructions via the coprocessor interface that are then dispatched to a stand-in execution unit,

which in turn, produces a set of prescribed results for various instructions. The testbench then examined

the results written to registers to ensure that the correct operation was being written to the destination

register. Of course this method is extremely limited, but was useful in fixing the most trivial (non-

computational) bugs.

The VU designer opted for a similar, yet reduced strategy. Instead of feeding an instruction from

the coprocessor interface and checking its progress through the pipeline like what was done for the FPU, he

partitioned the vector unit into several blocks and tried to verify them independently. For example, to

verify the lane, data and control were driven directly at the lane level, but only for a tiny subset of the ISA.

Furthermore, instead of relying on a script to check the results, they were only eyeballed. As the designers

were responsible for fixing their own blocks using the verification framework, this only saved him time in

the short term.

On the bright side was the MIPS core. Even thought it is an IP block, it was a pleasant surprise to

receive a thorough testsuite and testbench with the distribution. Unfortunately, early releases required the

core to be configured with the default cache and TLB sizes in order to run the testsuite correctly. Once this

 20

was corrected, it was very useful in debugging modules, macros, and pseudocells, as well as ensuring that

before integration, the design was valid.

7 Partitioning – RTL, IP, and Custom Block Verification

Now that major RTL blocks were available, they could be integrated and ISA verification could be

performed at the RTL level. The next major modification to the verification flow was the partitioning of

RTL verification tasks so that progress could be made in parallel by the designers and the verification

engineer. In addition to the use of self-checking tests to determine pass/fail conditions, RTL trace

comparison was needed to ensure complete adherence to the ISA as well as to facilitate debug by finding

the exact failure point.

Since not all blocks had been completed, it was necessary to try to partition and parallelize the

verification work in order to make progress on completed blocks. Moreover, since custom blocks were

lagging well behind, they were separated and stand-in behavioral models were used. Each of the custom

blocks (vector register file, vector multiplier, vector adder, vector shifter, vector rounder, vector saturation,

and crossbar) would be initially verified with a standalone testbench created by their designers. Only when

they had been fully verified would they be integrated with the rest of the design. Similarly IP blocks,

which should work by their very nature, were also separated and verified immediately. The remaining

blocks were synthesizable RTL, including the FPU, and the VU. RTL verification progressed quite

differently than custom module verification. Whereas custom blocks were designed to meet a specific

spec, which was easy to verify in most cases due to the lack of state, these RTL blocks were verified along

ISA lines. These two had received some verification work, but nowhere near enough. Since each of them

is a coprocessor, once the MIPS core was stable, these blocks (FPU and VU) could be attached individually

and then debugged. Once this was complete they would both be used simultaneously (while still using

behavioral versions of the custom blocks) to simulate the full VIRAM1 architecture. Succinctly put, in-

house RTL verification was broken into three parts: MIPS+FPU, MIPS+VU, and VIRAM1

(MIPS+VU+FPU). The first two combinations could be debugged in parallel by their respective designers

and the verification engineer.

7.1 Custom Block Verification
The first custom block, the register file, was somewhat unique in that not only was it extremely

regular, but it also made extensive use of dynamic logic. Because it is regular, only single row/column

pairs needed to be simulated (with appropriate dummy load) to ensure electrical timing and functionality.

However, the use of dynamic logic prevents any direct extraction to Verilog for simulation with the rest of

the design. As a result, it was necessary for the designer to verify the layout, and then provide an exact

functionally equivalent RTL representation for simulation. This ensured that the version simulated was

 21

based on the designer’s interpretation of the spec, and not the spec itself. If there were any

misunderstanding, it would show up. In order to verify the layout, a test generator was written that

accurately represented the register file, its contents, the write style, and the ports used. The test generator

produced code that was parsed, converted to a Spice deck, and embedded with the extracted Spice netlist.

The Spice deck was simulated with either Spice or TimeMill, and outputs were extracted and compared

against data produced by the test generator. The designer found the generator very useful in tracking down

bugs, which usually amounted to wiring problems. Relatively few bugs were found, a testament to the

designer and the regularity of the block. However, Spice simulation could take a day per cycle, resulting in

a somewhat lengthy verification phase.

The remaining custom blocks (the crossbar, and the five vector integer blocks) were all destined to

use the same flow by their designer. Since they are comprised entirely of CMOS or PTL, a Verilog netlist

could be extracted. These blocks were first verified with directed inputs, then random inputs with

cosimulation of the behavioral model to ensure correctness. Finally, the Verilog netlists were inserted with

the rest of the RTL for full chip verification. Significant delays, required to verify the extremely complex

custom integer datapaths (remember they are variable bit width vector integer/fixed point, signed/unsigned,

high/low, upper/lower datapaths), coupled with significant area overhead required to fix the ensuing bugs,

necessitated the use of synthesizable integer datapaths in VIRAM1. The crossbar, although even larger,

was extremely regular like the register file, and was essentially a routing exercise instead of array

construction. Once verification work was begun on this block in earnest, it was quickly completed.

7.2 Floating-Point Unit RTL Verification
As discussed previously, the MIPS core was quickly verified so that it could be included with

more encompassing simulations. However, the MIT floating-point datapath is not distributed with a

testsuite. Although a standalone testbench could have been written, lumping its verification together with

the rest of the FPU was a more efficient solution. The advantage here would be that ISA tests already

existed, and trace comparison could be used to provide more coverage. The downside was that this is both

ISA and IEEE verification, and it is possible that many bugs were present in the datapath that now could

only be found by examining the numerous corner cases required for IEEE compatibility. Since the FPU

RTL was completed first, its verification was started immediately. The FPU, being a coprocessor, was

easily attached to the MIPS core. Instead of using the on-chip memory found in VIRAM1, we continued to

use the sparse memory model provided by MIPS and accessed it through the SYSAD interface. Very little

work was required to attach, compile, and bring this environment up. Verification was then broken into a

testsuite MIPS provided for floating-point instructions and one written not knowing we would be receiving

one from MIPS.

The MIPS testsuite found a few IEEE bugs with the FPEU, including some with exception

handling, but very few in the reorder buffer logic of the FPU. The lack of bugs in the architectural part of

the FPU is primarily due to the way tests were written. Virtually every test was of the form load, load,

 22

operation, compare, and branch. This structuring prevented virtually any hazard from occurring. It was

clear that given the small number of bugs found with these simple tests, all of which were critical, not only

would more extensive directed tests be needed, but also significant random testing.

In order to begin running the UCB testsuite, several changes needed to be made. The first was a

modification to enable the running of code generated from vsim on the MIPS core. The MIPS testbench

was reused and a few changes were made to the simulator to produce a binary image that the testbench

could read. The verify script would then apply the appropriate command-line switches to vsim, which in

turn would produce this “.hex” file. The verify script would then post process it as necessary and run the

RTL simulator providing this as an input. The simulator would run to completion as usual, but now the

verify script would examine its output to determine the pass/fail condition used by self-checking tests.

The other change was to add support for trace comparison. Although both the core and the FPU

are inorder machines, the trace comparator was designed to support out-of-order commit, which is useful

for the vector unit. As previously discussed, there are three phases to trace comparison: trace generation,

parsing, and comparison. Generation has to be handled by each designer. In this case, a trace was

produced only for the FPU. This trace included the 32 FPR’s and the control register FCSR. The trace,

which was printed to standard out, included an identifier (to show it was for the verify trace), the simulation

time, the register in question (e.g. FPR[12]), and the value written to the register. Generation on the ISA

side is the same trace originally used for vsim-isa/vsim-p comparison. That is nothing more than the ISA

level trace (including instruction number). Parsing was nothing more than reading from these two sources

into two pairs of associative string arrays (time/value for ISA/RTL) indexed by the register. The new value

is appended to the list. The final step, comparison, simply ensures that writes to a given register occur in

the order specified by the ISA, which is an acceptable practice for an out-of-order commit machine.

After completing these modifications, the directed self-checking tests were run with trace

comparison turned on. A few new bugs were found. Some dealt with IEEE compatibility, and others with

exception handling in the architectural part of the FPU. These directed tests were significantly less

thorough than those written for the vector ISA, primarily because it was believed that initially not only

would we receive an implicit FPU embedded within the core, and that the new IP datapath would be

correct, but that the MIPS testsuite would be sufficient.

The overall lack of success here motivated me to write a simplified random test generator

specifically for the FPU. It was designed to generate all the cases any sane programmer would not. Like

the full random test generator described earlier, it was highly programmable, but instead of broad

instruction classes, the instruction classes in the floating-point random test generator were based on the

datapaths they exercised (add, mul, i2f, f2i, and so forth). The tests produced by this generator were

extremely effective in finding the impossible to enumerate cases involving exceptions, nullifies, kills, data

arriving out of order (from registers or memory) and the reorder buffer. In addition to these cases, for

which no reasonable number of directed tests could have ever found, there were several IEEE issues that

 23

were uncovered and not covered by the other testsuites. The majority FPU verification took less than three

months, but the trailing edge (caused by reorder buffer issues) took several more months to complete.

In many ways the FPU RTL verification was a dry run for VU or even full chip verification, since

it forced all bugs in the tools to be worked out, the testsuite/simulators to be adapted to the MIPS testbench,

and examined the more subtle issue of how two RTL designers feel about the tools and the way failure

information was presented. On the upside, the testsuite and tools were readily understandable, allowing the

designers to debug their blocks individually. For most cases, the trace comparison and the way failure data

is presented (time, ISA cycle, register, RTL data, ISA data) was sufficient to fix any computational bug and

many of the reorder buffer issues. Where verification information fails to be obvious, or at least becomes a

little more cryptic, is in the case where either the same data is written over and over to the same register

and one write is missing, or in the case of sticky bits in FCSR. In the latter case, it is not clear that an

exception occurred if the bit is already set. Nevertheless, it took relatively little time to completely debug

the FPU, despite the fact that the rate at which bugs were found was basically asymptotic.

7.3 Vector Unit RTL Verification
Once the VU RTL was believed to be completed, its verification proceeded along lines similar to

that of the ongoing FPU verification, correcting any issues that had previously arisen. The original plan

was to run through the directed self-checking tests one testsuite at a time, then move on to simple and

highly-restrictive random tests, and finally employ all the functionality of the random test generator.

However, the combination of the complexity of the design and the desire of the VU designer to keep

verification as simple as possible for him required some additions. The first testsuite, Vector/Basic, which

amounts to nothing more than a few ctc2/cfc2 instructions in the preliminary tests, was far too much for the

designer initially. What was not clearly seen was the fact that in addition to testing the vector unit, simple

things like clock generation, as well as the vector I/O block (an arbiter between MIPS LSU, VU, on-chip

DRAM, off-chip DRAM, and DMA), needed to be verified.

These restrictions required the creation of several new testsuites, which defied the simplicity and

flexibility of the previous testsuites. These tests had to be pure assembly language, since there was a

requirement imposed by the VU designer, that only necessary instructions be present. Thus, boot kernel

generation, essentially a parameterized PERL script that generates a boot kernel, could not be used. A

custom boot kernel was required on a per test basis. These custom boot kernels were hand-optimized

versions of the code seen in the generated boot kernels. Each of these tests had to be changed whenever a

major change to the design was made, like the amount of on-chip DRAM. The initial tests were run

completely from off-chip memory and progressed through testing a few rows in DRAM. Table 4 describes

these initial testsuites.

 24

TestSuite Description Tests Lines of Test Code

Other/BabyScalar Basic boot kernels, and off-chip memory accesses 8 2248

Other/DRAM Basic boot kernels, Scalar and Vector on-chip

memory access

21 4702

Vector/Baby Trivial vector instructions without memory

accesses

2 290

Other/Milestone Most basic scalar test (nop), and a scalar

Y=aX+b

2 66

 27 7366

Table 4 – Simple Testsuites for RTL Verification
This table details the testsuites added to verify the RTL testbench and simplify the
initial RTL debug.

The bugs these tests found would have been in every other test. This meant that they were nothing

more than an apparent timesavings. However, this was not the opinion of the VU designer/debugger. The

advantage, from the designer’s point of view, was that these tests start from the ground up. Make sure a

nop works, make sure the off-chip boot kernel can run, make sure on-chip memory can be accessed, and so

on. Harkening back to one of the tenets of verification, to make it easy for the designer, it was acceptable

to create these tests to make it easier for him to debug his code. Figure 10 details the verification flow

including RTL simulation. Design components (simulators or RTL) can be compiled and executed by the

verification scripts using parsed testsuite information as stimulus. At this point, RTL includes behavioral

blocks for datapaths.

We were now able to proceed with the rest of the Vector testsuite. The VU designer chose to run

the Vector/Arithmetic before the simpler testsuites. However, the code mapper in the verify script was

mapping vector initialization constructs to vector load (vld) instructions. Normally this mapping would be

perfectly acceptable, except it became apparent that a major bug was present in the crossbar, which is

required to accesses on-chip memory. This bug was far more than simply a coding style, it was a total lack

of communication on functionality resulting in the crossbar designer implementing what he thought it

should be, not what the behavioral RTL specified. Instead of waiting for it to be resolved, a simple toggle

in the verify script was utilized, which instead of mapping initialization constructs to vector load, mapped

them to vector insert (vins) instructions. This vector insert mapping utilized the scalar load store unit,

which bypassed the vector load bug, a transfer across the coprocessor interface, and a vector insert.

Luckily the vector insert instruction is very simple to implement and worked correctly from the start.

Similarly, the verify test construct used a vector store instruction by default. Reversing the operation, this

new mapping used a vector extract. This simple transformation allowed verification progress in parallel

with fixing the crossbar. The bugs found in the Vector/Arithmetic testsuite ranged from computational

errors to more subtle issues where it is documented that there is not an interlock on certain operations, or

the flipside where there are undocumented cases where there is no interlock. The later two were fixed by

changing the code to adhere to the RTL. The former bugs were fixed in the RTL.

 25

verify.execute.pl
No trace comparison
self-check only

MIPS
Testsuite

vsim

MIPS RTL

MIPS Testbench
Self-checking
Trace comparison with
 “correct” with diff

Figure 10 – RTL Verification Flow
RTL Verification can only proceed after the testsuite and ISA simulator (vsim) have
been verified. Hardware description code is on the left, and stimulus (tests) are on
the right. Time, or more precisely complexity increases down the page. Verification
starts with the ISA simulator, proceeds to MIPS standalone, then MIPS+FPU. In
parallel, MIPS+VU verification can commence. Finally, RTL verification is completed
with MIPS+VU+FPU simulation.

Vector/cop2
Testsuite

FP/cop1
Testsuite

DRAM/Basic
Tests

FPU RTL
(with EU)

verify.execute.pl
FP trace comparison
Self checking

 VU RTL
(behavioral IU)

verify.execute.pl
VU trace comparison
Self checking

Random
Tests

verify.execute.pl
VU+FP trace comparison
Self checking

Scalar
Tests

MIPS FP
Testsuite

FP random
tests

FP Random Generator
Configurable with
hazards, frequencies,
exceptions, etc…

Random Test Generator
Configurable with
hazards, frequencies,
exceptions, etc…, for
both vector and
floating point

Complex
Tests

 26

Running the first few vector testsuite uncovered some bugs that were extremely nasty. For

example, some instructions were either encoded by the assembler or decoded by the RTL incorrectly. Thus

a vadd in the simulator was executed as a vsub in the RTL. As a result, a testsuite was written to ensure

that instructions were being encoded correctly by vsim. Perhaps more critical were chaining bugs. The

RTL defines four kinds of read chaining styles, and four types of write chaining styles, and the three

standard hazards. An attempt was made to enumerate these cases into directed tests. Because these

conditions are timing critical, these tests were essentially worthless. The search for these potential bugs

was temporarily bypassed in favor of making progress on other testsuites. As the search for reorder buffer

bugs in the FPU used a random test generator, so did the search for chaining bugs.

The vector floating-point testsuite was passed quickly because the datapath had been previously

debugged in conjunction with the FPU RTL, and the VU used an imprecise exception model. The other

vector testsuites were also very easy to run due to relatively simple instructions, and in some cases, their

previous use in the code-mapping fix.

A set of more complicated tests was also written to handle the rarely used, but critical,

functionalities of the chip and project. Unlike all previous tests, many of these exercised functionality only

present in the hardware, and not in the software simulator. As a result, where other tests could rely on trace

comparison as a safety net or even a primary strategy, these tests had to be completely self-checking, and in

some cases, rely on visual inspection. The interleaving and Syscall tests had analogous functionality in the

software simulator. Once they had been debugged, the functionality was applied to all previous tests via the

verify script. A mode switch was used to determine the interleaving. However, Syscall emulation allowed

me to replace the hack exit code solution previously used, where the contents of one specific register

became the exit code, with a termination signal code that embodied the pass/fail condition. Thus the same

method is used in all simulators, and can even be used in real hardware. A similar mode switch prompts a

loader that uses either DMA transfers or a series of word copies to transfer the program from off-chip

memory to on-chip DRAM. There is no support for this in the software simulator, and it requires extensive

reworking of the simulator’s output in order to allow it to run on either the RTL or on hardware. The

testsuites required to verify these unsupported functionalities are detailed Table 5.

Unlike the FPU, which included a reorder buffer and implemented a precise exception model, the

VU, which implements an imprecise exception model and element group execution, allows for multi-cycle

out-of-order commit. This meant that in order to correctly perform trace comparison against the RTL,

significant modifications on the trace comparator were required. A (vector) scalar commit, a commit to the

vector unit’s scalar register file, was straightforward and relatively simple. The trace comparator was

modified to show that writes to a given register occur in order, which is a departure from the conventional

view that writes to all registers must occur in order. However since the commit occurs in a single cycle, it

was a relatively simple modification. A vector register commit, however, is entirely different. Writes to

the vector register file occur in element groups of 256 bits. Thus, for most instructions, a vector register

 27

write will require eight cycles. The logical conclusion is not to view the register file as 32 registers of 2048

bits, but more simply as a register file of 1024 registers of 16 bits, or ideally a 2 dimensional array (32 by

32) of 16 bit elements. Now, each element write is atomic, allowing this interpretation to easily be folded

into the existing trace comparator.

TestSuite Description Tests Lines of Code

Other/ContextSwitch Runs two “programs” and switches between them on

exceptions

9 4502

Other/DMA Exercises the DMA engines in the VIO block. 12 2761

Other/Interleaving Changes the interleaving of eDRAM (i.e. reorders

address bits and thus mapping of physical

address to DRAM macro bank, row, and column)

1 53

Other/Syscall Tests the RTL SysCall Emulator which was

retroactively applied to all tests via the

verify script.

2 24

Other/Lib Due to miscommunication, the compiler will

generate unimplemented FPU instructions, which

are handled via a library routine.

4 1324

 28 8664

Table 5 – Verification of RTL specific functionality
This table details the testsuites added to verify the RTL specific functionality. Some

of these tests could not be run on the ISA simulator at all.

Unfortunately, the VU RTL implemented a slightly different ISA than the ISA simulator. As a

result some tests would fail trace comparison even though the test would pass self-check. Furthermore,

directed tests designed to trace some of these failures would still pass self-check at the failing instruction.

It quickly became clear that one of the following solutions had to be implemented:

1. Modify the VU RTL to work as the ISA specifies,

2. Modify the ISA simulator to work like the vector unit RTL,

3. Modify the trace comparator in the verification script to account for the discrepancy

in the case where the results of instructions under certain conditions are

conceptually invalid.

The third choice was selected for several reasons. Foremost, the difficulty involved on the part of the VU

designer in making the hardware work would require a complicated or cumbersome implementation.

Similarly, there was no reason to make the ISA simulator conform to behavior that is invisible from

software.

7.4 VIRAM1 RTL Verification
After both individual RTL modules were working reasonably well, they were combined and

verification proceeded with larger more complicated programs. One type of these new larger more

complete tests was the micro kernel testsuite, which performs a series of memory and CPU intensive

operations including transfers, vector arithmetic, matrix arithmetic, on relatively large structures using both

 28

coprocessors. Additionally, the random test generator was updated. Memory coherency events were

created and handled via the generation of the sync instructions. Finally, a chaining primitive was created.

This would select two instructions, one each from the four read and four write types, a hazard, and a shared

register, and generate a series of intervening instructions to generate a chaining event. These were

extremely useful in finding timing dependent bugs. However, the cases previously found by VU RTL

verification, which had not been resolved, made complete random tests very difficult until these bugs were

fixed.

8 Coping with ISA Evolution and

Verification in the Presence of Unspecified Functionality

There were several major groupings of failure signatures. The first were false writes, in which

data is actually written to the vector register file and thus the RTL trace, even though the write is invisible

to software. The second group is a lack of interlocks on flag registers allowing out-of-order commit to flag

registers from arithmetic exceptions. Unfortunately, since the writes are sticky, simple reorder checking is

insufficient. Third, vector compress and iota instruction boundary cases are a clear departure from the ISA

manual. Fourth, nullified writes from stride zero or certain indexed stores will not appear in the RTL trace.

Finally, there is some randomness in the hardware, which can never be reflected in software. The solutions

were to modify the RTL to note when a write is not a commit, modify tests not to generate certain now

“invalid” cases, and finally, modify the trace comparator to pick up on notes from the RTL as well as

keeping track of the machine state in order to decide whether or not a miscompare is really that.

8.1 Coping with ISA changes
In addition to these problems, and the microarchitecture changes, ISA level changes were made,

the most notable of which was the number of flag register files. Changing the number of vector register

elements (either MVL or the number of registers) had been considered, but this was never done. If the

testsuites had been further abstracted, these ISA changes would have been completely invisible, and in

some cases, actually were. However, the desire by designers to make the tests easily readable meant that

this abstraction could not have been implemented without sacrificing the goal of making the testsuite/bench

usable by the designers. As a result, the solution was a mix of code generator changes and rewriting tests.

The limited abstraction helped simplify this process.

8.2 Vector Unit Issues Which Caused False Failures
The vector unit was not strongly tied to either the simulators or the publicly available ISA

documentation. As a result, in many cases, tests would fail because either the test or the testbench made

 29

the assumption that the ISA documentation specified exact functionality and included all restrictions in the

form of various exceptions, typically vIUI. Actual implementation, with functionality determined by

conceptual understanding of tests in private benchmarking kernels, allowed for, in some cases, unspecified

results. The ISA document, originally generated from the ISA simulator, presented the image of a fully

deterministic processor. Communication between designers is key to any project, and the lack of it can

manifest itself in failures, delays, kludges, and less than acceptable design performance. Having the

hardware designers update the ISA document to reflect non-deterministic behavior is essential.

8.2.1 Spurious Writes to the Register File

The vector control unit cannot predict before a load is committed, without extensive additional

logic, whether or not a stall will force the write of a 256 bits load to be spread across multiple cycles. In

fact, it cannot even determine on the cycle before it is writing whether or not the data being written is

correct. This is perfectly acceptable, since on the next cycle it can determine that a stall occurred, allowing

garbage to be written, and prevent any other instruction from reading from the vector register file until the

final data has been written. However, from a trace generation perspective, it seems like a spurious write, or

even an unchecked hazard, has occurred. The solution was to append the trace with another entry stating

that the previous write was garbage. The trace comparator in the verification script can implicitly read this

entry, understand it, and compensate for any number of consecutive spurious writes.

8.2.2 Issues with Exception Flags

Exception bits are sticky in the sense that the exception conditions from an arithmetic operation

are OR’d with the exception register, instead of simply written. There is no interlock to ensure that flags

written from the first arithmetic unit (AU0) are ordered with respect to instruction order with those written

from the second arithmetic unit (AU1). Thus the exceptions from a VADD instruction could be written

before those of a VMADD, even though the VMADD was both fetched and issued first. This is not a

violation of the ISA since instructions are no longer atomic in the vector unit. They can be interrupted by

an exception, and later resumed. However, since exception bits are sticky, the trace comparator cannot

simply try to swap two writes to the flag registers holding the exception bits, but must try to ascertain

whether or not a possible reordering resulted from completely aberrant values in the trace.

Perhaps an example will more adeptly illustrate the predicament. In this case the VADD

completes out-of-order and ahead of instruction order. The exceptions generated are not visible to either

software or hardware traces. Only the contents of the flag registers that hold the resulting exception bits are

visible. The exception bits represent elements that produced exceptions.

 30

 ISA RTL

Instruction

commit order

Actual

Exceptions

(not visible)

Value in flag register

(i.e. trace)

Instruction

commit order

Actual

Exceptions

(not visible)

Value in flag register

(i.e. trace)

- - 0000 - - 0000

VMADD 1000 1000 VADD 0001 0001

VADD 0001 1001 VMADD 1000 1001

 Thus the trace comparator would infer from examination of the ISA trace that the VMADD

produced an exception in element 0 (MSB). We know this because the value in the flag register before the

execution of the instruction is 0000, and after it is 1000. The MSB is the only one that is obviously set.

Thus the exception nibble for the VMADD instruction must be “1000”. The exception nibble produced by

the VADD is far less clear. We know that the LSB (element 3) is set, because that bit in the register file

changes. However, we cannot tell if the MSB of the actual exception nibble is set entirely because

exception writes are sticky. The previous value of the MSB was 1, and since 1+? is 1 (logical OR), we

cannot determine the value of Z. As a result, we can say that the exception nibble for the VADD instruction

is “?001”. i.e. we don’t know the MSB.

 When we examine the RTL trace, we can infer that the VADD instruction produced an exception

nibble of “0001”, and the VMADD instruction produced an exception nibble of “100?”. Now we can let

the trace comparator compare the exception nibbles produced by each instruction. Any bit that is known in

both the RTL and the ISA traces can be compared:

VMADD “1000” vs “100?” consistent, but not conclusive

VADD “?001” vs “0001” consistent, but not conclusive

At best, we can say the RTL trace is consistent with the ISA trace. However, we cannot conclude that the

RTL is correct. In practice, having such luck with numbers is rare. Typically, in random arithmetic

programs with out-of-order commit enabled, the trace comparator is dealing with derived exception nibbles

like “????”. That is, nothing can be said about it, and thus anything can be consistent with the RTL trace.

The fact that the underlying reordering is completely unknown to the trace comparator, in

conjunction with pipelined execution and sticky bits, results in low confidence for this method when

applied to tests that generate large numbers of exceptions. Basically, all that can be said is that nothing is

obviously wrong, but it cannot be said that it is correct. The verification script, where it failed to make a

determination, produced a warning allowing the designer to verify correctness. No real errors involving

sticky exception bits were ever detected because of reordering, partly due to the flexible program semantics

involved.

8.2.3 Unspecified results for Trailing Elements in an Element Group

One of the worst failures, leading to the most heated debates, dealt with how vcompress and viota

instructions should be handled in hardware. The ISA documentation is explicit on the functionality, but the

hardware accepts a more “spirit of the instruction” approach. It came as no surprise that these two distinct

approaches lead to differences in the trace that were initially flagged as failures. In the ISA, a compress or

 31

iota will write elements only up to that inferred from the flag, but in hardware, entire element groups are

always written. Even worse, the data written for elements beyond the last element inferred from the mask

and up to the last element in the element group is unpredictable in the RTL. The merits of either method

are not pertinent to this discussion, only the fact that the RTL solution won out. To account for this, the

trace comparator had to keep track of instructions, the values in the flag registers, the vector length, and

vpw in addition to the normal <time|register|data> tuples. When it is determined that a compress or iota

has finished while parsing ISA trace, it is possible to reconstruct the bits of the mask it used and determine

what the index of the last element written by the ISA was. With this in hand, it was easy to determine how

many elements (0…25-vpw) had been written by the RTL with indeterminate data. Additional tuples were

appended to the ISA trace with data fields replaced with a symbol to denote “Don’t care – its garbage from

a compress/iota”. During trace comparison when this was seen, the corresponding write in the RTL trace

was ignored. This solution allowed continued reuse of the hundreds of tests in the testsuite that otherwise

would have had to been rewritten.

8.2.4 Nullified Writes to Memory

Another interesting case arises for indexed stores where elements within the same element group

have the same index and the similar cases where strided stores are used when stride is set to zero. In either

case the RTL processes address calculations in element groups and implements a micro TLB (uTLB) to

quicken the address translation. If both addresses in question can be translated by the TLB, then the two

separate writes to the same physical memory address are coalesced into a single write, which is sent down

the memory pipeline. A uTLB miss followed by an eviction of the critical entry could result in the case

that both writes to the same address actually take place, albeit on different cycles. From a trace point of

view, which has absolutely no knowledge of the uTLB state, whether or not writes are consolidated appears

completely random. Since vector registers are processed in order of increasing elements for this particular

access operation, the last write to that address in question is considered the correct value.

To handle this potential discrepancy in the trace comparator, all preceding writes to this address in

both the ISA and RTL traces, for this and only this store, can be ignored. A simple $display() statement

was added to the Verilog code to note when a vector store has finished which is when the last element of

the last element group commits. This comment was noted by the trace parser and used to mark the end of a

vector store to memory. A similar point could be inferred from the ISA trace. When comparing traces, we

know there is an error or nullifications if when we reach the end of a vector store in the ISA trace, there are

still more trace entries before the end of the vector store in the RTL trace. Simply scanning forward until a

match is found, the end of the vector store is found, or the end of the vector trace is reached, will determine

whether or not this is a failure or acceptable uTLB behavior. Spurious matches on comparison will soon be

determined, since either the trace will be shorter or different. Memory coherency issues arising from the

dual load store units (vector and scalar) are implicitly avoided since traces are maintained on a per

address/element concept, and memory coherency is handled via software instructions like vsync.

 32

8.2.5 Other Issues

The next problem, DMA transfers, arose because they are not supported in the ISA simulator, so

when running DMA tests on the hardware, we do not run trace comparison on memory. Trace comparison

on registers, as well as the self-checking option, are still available and are used to verify the tests during

regression. To ensure that DMA transfers function correctly, self-checking can be performed on memory

locations, and timing can be verified by visual inspection.

Finally, some control registers in the vector control unit, such as vtlbrandom, are either not

modeled at all in software or do not use the same model. As a result, ISA and RTL might never match up.

This is perfectly acceptable, and problems can be avoided by restricting the visibility of values in these

registers. For trace comparison, like memory accesses for DMA tests, these registers were ignored without

any loss in confidence in the verification.

All of these problems were resolved, or acceptable solutions were presented, allowing completion

of the verification of the RTL level of this design. The designer could rapidly verify any future changes for

performance based on timing from synthesis transparently on both SPARC and x86 processing farms with

this extensive testsuite and flexible and easily understandable testbench.

9 Back-end Flow Verification

After RTL was verified, our design followed a “correct-by-construction” approach. At each stage

from RTL to GDS, the design should always correct. Of course, it would be foolish to believe that the tools

will work as advertised, or more importantly, that the human interaction to configure and run the tools can

ensure correct-by-construction. To verify the flow from RTL to GDS, a few additions were made to the

existing verification method, some of which are textbook.

First, it became clear that custom integer blocks were not a good choice for this design, so five

synthesizable modules were written for the following vector datapaths: add, shift, multiply, round, and

saturate. In addition to the blocks themselves, a testbench was written that instantiates the synthesizable

code (either in RTL or gates), the behavioral model, and a random test generator. Furthermore, Formality,

an equivalence checking tool, was used to prove that the original behavioral models (proven correct in RTL

ISA simulation) were equivalent to the resultant gate level netlist. These blocks were then merged with the

rest of the standard cell flow, which included IP blocks, control blocks, and the FPU.

All synthesizable blocks were synthesized using Design Compiler, which should produce a correct

mapping to gates. However, in order to prove this equivalence, two additional methods were used. The

first and most general method was to take the gate level block, instantiate it in place of the existing RTL

module, and rerun the testsuite. This worked for all blocks since the watcher modules were external to

synthesized blocks. The second pass, where appropriate, was to run the block through Formality, which

 33

would then determine if the synthesized block was equivalent or not to the original RTL. However, all

invalid states must produce x’s in the behavioral version in order to be ignored by Formality. This is

clearly not possible for most of the blocks. In fact, only the datapaths and the MIPS core were run. At this

point it became clear that even Synopsys/Formality could be fooled. Poor coding style in the RTL, in the

form of unsynthesizable code, can pass through Synopsys/Formality without any errors, but will quickly

fail on gate level simulations since the mapping generated has no grounds in hardware or four-state logic.

The next step in the backend flow was place and route (PnR). Apollo, our PnR tool, is capable of

in-place optimizations including logic restructuring. Since the netlist was changed in this part of the flow,

it was necessary to verify the correctness of the final netlists. Once again multiple checks were made to

ensure this. The first was a simple power/ground check that verifies that all power/ground connections in

layout are the same as those specified in the netlist. This could catch some issues where there were opens

or shorts generated in the power grid.

The second was Layout vs. Schematic (LVS). This was run from inside the PnR tool.

Occasionally it would find something wrong – shorts, opens, power grid issues, and of course any hand

edits used to fix charge-collecting diodes issues, ECO’s, or DRC errors.

Third, all six PnR blocks were streamed out as a Verilog netlist and run through our testbench. In

order to save time, these blocks were inserted one at a time, and various combinations were distributed

across our processing cluster. The only problems that arose were the need to write case converting

wrappers and a few timing problems arising from event ordering issues in Verilog. The original netlist was

case sensitive, but the library that Apollo used was case insensitive. This required Apollo to be case

insensitive.

Finally, a series of DRC checks was performed. The first was a simplified rule set run from

within Apollo. The other five checks were Hercules runs using ever more detailed run sets. Using simpler

run sets first quickly found simple common bugs, allowing a shorter cycle in the DRC flow. The first

three, metal only, everything but DRAM, and full chip, were run using an older version of IBM’s ASIC run

set, as we did not have a license for Hercules to run the newer one on. They required 6 hours, 12 hours,

and 48 hours respectively for each run. The next two DRC runs were full ASIC and full foundry post

processing. They were run by IBM, but required a week turnaround for various reasons. As expected,

DRC checks found many thousands of bugs since internally Apollo only uses a small subset of the design

rules, but only one was a critical functionality issue. All were fixed.

After including the back-end verification flow, Figure 11 illustrates the entire VIRAM1 design

flow. Whenever a testbench or test from the testsuite fails, the designer must backtrack to find the point in

the design flow in which the bug was introduced. Of course, it is possible that the testbench or the test

itself introduced the bug, although this tended to happen when the documentation describing the block in

question was inaccurate, incomplete, or out of date. Full-chip RTL simulations were by far the most time

consuming, as suggested by the convergence of arcs for that step in the flow, but also the most beneficial,

as far and above the vast majority of the bugs were found there.

 34

verify.execute.pl

Design Compiler,
Formality

Flow

ApolloII PnR/LVS/DRC,
Hercules DRC

Flow

Testsuite vsim

Ctrl RTL

RTL (post
synthesis)

RTL
(post PnR)

DP RTL

Custom RTL

MIPS RTL

verify.execute.pl

verify.execute.pl

verify.execute.pl

verify.execute.pl

Integer Unit
Standalone
Testbenches

MIPS
Standalone
Testbench

Standalone
Testbenches

Figure 11 – Final verification flow
The MIPS, custom, and datapath RTL blocks run their individual testsuites first.
Second, each RTL block, or set of blocks, is compiled, and executed by the verify
script with stimulus from the testsuite. In addition to self-checking results,
register values are compared against those from the software simulator for every
instruction. Next, all RTL blocks are synthesized. The resulting netlist is
simulated using the testsuite. Finally, ApolloII is used to place and route all RTL
blocks. After LVS, and DRC flows, a netlist is extracted. The final netlist is
simulated using the testsuite just as all other blocks had been. The flow encompasses
ISA, RTL, gate and post PnR levels of abstraction.

ISA Level

RTL Level

Gate Level

Post PnR Gate Level

 35

10 Related Work

Cosimulation is a popular technique for verification of microprocessors. In essence two

simulators (test and good) are run in lockstep, and the results are compared at commit to test for any

problems with the test simulator. The use of the VIRAM1 ISA simulator to check the other simulators is a

similar approach. However, fast fail was not possible since it was not run in lock step with the

performance, RTL, or gate simulators. As a result the entire ISA simulation had to be run. Then the entire

RTL simulation had to be run. Finally, the traces from each had to be compared to determine if there was a

failure. Failure determination would have been much quicker if traces could be compared dynamically.

The other major obstacle was that the cosimulation approach assumes that both simulators implement

exactly the same ISA, clearly not the case for the VIRAM1 simulators.

Cosimulation can be extended to hardware by embedding a simple hardware checker to verify the

execution of a much more complex processor. The goal here is not to verify the chip after tapeout, but

instead to catch any bugs not found before tapeout – in affect, trade performance for accuracy. In addition

it is possible to catch electrical/timing issues such as setup, hold time, v boxes, alpha particles, and so forth.

DIVA [Aus00] embeds this checker module in the commit stage within the final hardware with

negligible slowdown and area penalties. Instructions passed to the commit stage contain the inputs in

addition to the result value. The checker reexecutes the instruction to verify the result. In addition to avoid

deadlock cases, a watchdog timer is implemented to wait for the maximum instruction latency. If no

instruction has completed its execution in the allotted time, the core is restarted at the last instruction

committed. Of course the maximum effort must be applied to verifying the DIVA checker. Although,

since it is small and relatively simple, a formal method could be applied.

 [MAW01] is an extension of the previous paper [Aus00]. The core

(fetch/decode/issue/execute/reorder) produces a program stream of executed instructions. These

instructions include a predicted next program counter, instruction word, operand values, result, and so

forth. The checker now executes all four basic stages (fetch/decode/execute/memory) in parallel since it

can use the predicted values as inputs to each stage. For example, the predicted instruction word is used as

an input to the checker’s decode stage. If any prediction is shown to be incorrect, then the core is flushed

and restarted. Otherwise, the instruction commits. Once again a formal method is applied to prove the

correctness of the checker “pipeline”.

 Although DIVA might be appropriate in VIRAM1 for the MIPS core or the FPU, it is certainly not

appropriate for the vector unit. This is because the checker replicates the datapath. Since the vector

datapaths constitute roughly 60% of the vector unit, doubling them would be impractical for VIRAM1 or

any data parallel architecture. Furthermore, the lack of a precise exception would hamper restart

implementation. A simplified checker might be a possibility.

Consider the 32 entry, 2048b, VIRAM1 register file. There are 265536 initial states, each with 226

possible transitions. This is an unimaginably complex state machine, and it ignores the MIPS core, cop0,

 36

FPU, and much of the vector unit. To check every possible transition through simulation is impossible.

For simpler designs, such as a 32b core, formal methods could be applied to verify the design. One such

method [PJB99] attempts to verify the RTL, gate, or switch-level version of an ARM processor against its

ISA. This process requires several steps: 1. Describe the ISA using an ADL. 2. Define the mapping from

the high-level language to the low-level implementation. 3. Use STE (Symbolic Trajectory Evaluation) to

verify the assertions. The major problems that prevent use of this methodology in VIRAM1 verification

were the complexity of the architecture, and the fact that the only person who had the knowledge to

generate the mapping machines was the RTL designer.

In the end, verification of VIRAM1 required tried and true methods. Massive simulation, with the

timesavings of a test file format abstraction, was used for ISA and RTL verification. Gate level verification

was performed with industry standard correct-by-construction methodologies and formal verification where

possible. Any other method would have been an unacceptable gamble.

11 Conclusions

The incredibly nebulous task of verifying the IRAM project (ISA design, software, and hardware

in the form of VIRAM1) was completed in less than three years. The constant evolution of the project,

changing timetable, and loss of manpower through graduation, meant that unlike a conventional project,

this was not a single large task that could logically be partitioned into a hierarchy of sub tasks, each which

could be completed independently, but a series of hundreds small interdependent tasks. Figure 12 details

the project tasks over time, including design steps, verification steps and correct-by-construction tools.

Many believe that verification technically should not be necessary at the end, given the use of correct-by-

construction tools. However, in reality this is completely untrue. Correct-by-construction tools are only as

good as the library or information or completeness of the design rules passed to them.

 37

The five major goals of the project were each handled in different ways. The broad concept of

correctness was accomplished via a tremendous number of cycles simulated using handwritten self-

checking, generated self-checking, compiled, and random tests. Correctness of the ISA was attained by

writing tests based on the description and intended use of the instruction. Synthesizable RTL was verified

in the same way using the same tests. Datapaths were verified through standalone testbenches and the use

of Formality to prove that the original behavioral RTL previously verified matched the synthesized gate

level netlist. Custom modules were verified either through cosimulation of behavioral representation with

the extracted netlists or in the time prohibitive designs, via high-level modeling and Spice deck generation

for simulation. Correct-by-construction methodology - synthesis, restructuring in Apollo, and the like -

was used extensively to ensure that correctness of the RTL translated into correctness of layout.

Additionally, LVS and DRC checks were performed to check for cases that might be missed by these tools.

For a final measure of confidence, gate level netlists were simulated using the ISA testbench just as RTL

had been.

VRF
Design &
Verif.

FPU

Design

FPU

verif.

Figure 12 – Final Timeline
VIRAM1 flow from design through implementation. The three fill shades represent
design, verification, and implementation. Verification must be performed after design
and after implementation. Decreasing manpower resulted in a significant increase in
individual workload.

VSIM-P vs.
VSIM-ISA

 Self-checking Testsuite
 Construction

MIPS
verif.

VU Verification
VU

Design

LVS &
DRC

VU Synthesis

MIPS

Synthesis

FPU
Synthesis

VU
PnR

FPU
PnR

MIPS
PnR

Full-chip
Simulation

Full-chip

PnR

 Simulator
 Verification

IU Design,
Synthesis,
Verif.,

PnR

Spring‘00 Summer‘00 Fall‘00 Fall‘99 Fall‘02 Fall‘01 Summer‘01 Summer‘02 Spring‘01 Spring‘02

Store XBAR

Design

Load XBAR
Design

And Full XBAR
Verification

 38

TestSuite

Description

Tests

Test Code

Lines

FloatingPoint/Arithmetic Basic floating point arithmetic 18 891

FloatingPoint/Arithmetic.with.NaNs Basic floating point arithmetic using and

producing NaNs

10 520

FloatingPoint/Bugs Bugs with the MIT execution unit reported

by other companies.

2 20

FloatingPoint/Exceptions Test all floating point exceptions 43 2095

FloatingPoint/LoadStore Test all floating point loads and stores

(e.g. lwc1)

4 238

FloatingPoint/uKernel Small floating point kernels. (e.g. dot

product)

10 1151

Other/BabyScalar Basic boot kernels, and off-chip memory

accesses

8 2248

Other/Cache Cache initialization/invalidation tests 2 529

Other/Compiled Tests generated by compiling C code 2 N/A

Other/ContextSwitch Runs two “programs” and switches between

them on exceptions

9 4502

Other/DMA Exercises the DMA engines in the VIO

block.

12 2761

Other/DRAM Basic boot kernels, Scalar and Vector on-

chip memory access

21 4702

Other/Interleaving Changes the interleaving of eDRAM (i.e.

reorders address bits and thus mapping of

physical address to DRAM macro bank, row,

and column)

1 53

Other/JTAG Vector JTAG test 1 5

Other/Lib Due to miscommunication, the compiler

will generate unimplemented FPU

instructions, which are handled via a

library routine.

4 1324

Other/Milestone Most basic scalar test (nop), and a

scalar Y=aX+b

2 66

Other/Syscall Tests the RTL SysCall Emulator which was

retroactively applied to all tests via

the verify script.

2 24

Other/TestVSim Tests designed to test vsim non-ISA

functionality

5 35

TLB/Exceptions Test for every TLB exception 50 2989

TLB/Instructions Tests for controlling the TLBs 6 179

TLB/uKernel.generated.stride Small kernels for testing the TLB using

faults arising from strided accesses

9 4722

TLB/uKernel.generated.unitStride Small kernels for testing the TLB using

faults arising from unit stride accesses

3 534

TLB/uKernel.old Older set of TLB kernels 17 6740

Table is continued on next page

 39

Vector/Arithmetic Vector integer arithmetic tests 193 18261

Vector/Baby Trivial vector instructions without

memory accesses

2 290

Vector/Basic ISA perspective of the simplest tests 12 216

Vector/Chaining Basic vector chaining tests 48 848

Vector/Encoding Look for encoding bugs 6 834

Vector/Exceptions Test the vector exceptions and different

conditions they arise under

128 9112

Vector/FlagProcessing Logical, pop, 8 at a time 514 32659

Vector/FloatingPoint 42 2561

Vector/LoadStore All forms of vector load and store tests

(unit stride, stride, indexed)

557 64145

Vector/Misc To/from control/scalar, vsatvl 12 242

Vector/Processing Vector processing tests (insert, extract,

half, butterfly

495 36214

uKernel Large programs, e.g. matrix matrix

multiply

46 9953

 2296 211663

Table 6 – Complete Testsuite

This table details all self-checking testsuites. Note that most tests could be run in
thousands of different modes, and each test x mode generation typically had ten times as
many lines of assembly language as test code. It should also be noted that in addition
to these tests, the random test generators produced tens of thousands of tests, the vast
majority of which found no bugs. In addition, there are about 500 tests that became
obsolete as the design evolved.

Minimizing the testsuite design effort and adaptability to changes went hand in hand. Abstraction

of the testsuite into a language of primitives, which had direct ties to instructions, allowed for rapid

construction of a testsuite of thousands of highly configurable tests capable of producing hundreds of

millions of lines of assembly language. The complete testsuite is detailed in Table 6. Additionally, this

abstraction allowed for a parameter to completely change the code generated and in turn run. Thus, bugs

and known issues could easily be avoided and verification could continue without blocking. Similarly, this

mapping allowed for variations in the code generated to be randomly selected allowing rapid exploration of

the instruction sequence space. This abstraction, in conjunction with straightforward traces and debug

information, had the benefit of making tests extremely easy to be read by the designers. This meant that

they could simulate, ascertain what and when the failure occurred, determine what the problem was, and fix

it quickly. It should be noted that with over 500,000 lines of processor simulator code (both hardware and

software), coupled with the typical 6 lines per bug error rate, that nearly 100,000 bugs should be present.

Although we quickly stopped recording every bug due to the time wasted, without a doubt there were

thousands. Software simulators, for which we did initially track bugs, had hundreds. This vastly improved

error rate was accomplished through an extremely thorough testsuite, clearly noting what the failure was,

and extremely capable designers. It should be noted that had the RTL designers, after deciding on

implementation, updated the ISA documentation to reflect possible non-deterministic behavior, those cases

could have been avoided altogether and significant testsuite construction time could have been saved.

 40

In the end, minimization of CPU requirements was easily accomplished through parallelism. ISA

simulations could be run on the Millennium cluster (over 100 nodes), allowing a single mode of the

testsuite, normally whose tests individually take less than ten seconds to run, to be run in less than ten

minutes. The time required to debug ISA level tests obviously far outweighed the CPU time required for

simulation. Even the CPU time required to simulate RTL was still far outweighed by the human-centered

debug time due to the drastically increased complexity of the RTL. Problems with the Millennium cluster,

and having only ten licenses, forced all simulation to migrate to the IRAM and Oceanstore clusters. Even

after this drastic reduction in parallelism, debug time still dominated the verification work.

As this design shifted to a logic ratio of 20% soft IP, 65% synthesizable, and 15% custom, future

designs will likely shift to more soft IP, and less custom logic. Additionally, the majority of synthesizable

RTL will likely be further abstracted into a high-level architectural modeling language that could be

synthesized into RTL, which in turn, could be synthesized to gates. Thus verification could be performed

on the high level design, and correct-by-construction could be used to ensure that the resulting RTL and

netlist implement the design. The entire design could be modeled in this high-level of abstraction, given

that high-level models of the IP and custom blocks were available, allowing for rapid simulation to verify

that the design implements the ISA. Alternately, a formal model of computation could have been used to

represent the processor, thus allowing a variety of formal modeling techniques to be used to expedite

design and verification. Of course, simulation will be ever-present at every level of the design to insure

that the design does actually work for at least some code snippets. Furthermore, cosimulation of RTL with

high level language will allow for construction and testing of a single block at a time, while not suffering

the time penalties of waiting for complete RTL completion nor the inherently slower RTL simulation time.

Minimization of custom RTL and large use of IP will also simplify the verification work since less will

need to be verified via Spice or extracted netlists, and more could be verified by a single provider instead of

every customer. Finally, abstraction from the ISA into macro instructions and generation of tests, while

maintaining a clear picture of the ISA level instructions that tests would be mapped to, will allow for

flexibility in the design space exploration while minimizing the verification time.

Acknowledgements
 First I would like to thank my advisor, Professor David Patterson, for the opportunity to work on

the VIRAM1 project, for his guidance, encouragements, and especially for his patience as I wrote this

report. Second, I would like to thank Christoforos Kozyrakis, and Joe Gebis for their friendship, support

and commitment to the VIRAM project. In addition Mike Howard and John Kuroda were extremely

helpful and inventive in maintaining the machines and software we used. Next I would like to express my

gratitude to DARPA, MIPS, IBM, Avant!, MIT, ISI, Cray, Millennium Project, NSF, and Synopsys for

their support of the VIRAM project. Finally I would like to thank my brother Joe and my parents, Richard

and Kay, for their support and encouragement.

 41

References

[Aus00] T. Austin, DIVA: A Dynamic Approach to Microprocessor Verification, in Journal

of Instruction-Level Parallelism, Vol.2, 2000.

[Fro00] R. Fromm. Vector IRAM Performance Modeling: vsim-p, the V-IRAM

Performance Simulator. Version 3.7.5. Berkeley, CA. March 4, 2000. Available from

http://iram.cs.berkeley.edu/guest/perf.ps as of May 2, 2001.

[HP96] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach, second

 edition. Morgan Kaufmann, 1996.

[IBM00] IBM. ASIC SA-27E Technical Library.

http://www-3.ibm.com/chips/techlib/tech-lib.nsf/products/ASIC_SA-27E, 2000.

[Koz99] C. Kozyrakis. A Media-Enhanced Vector Architecture for Embedded Memory

Systems. Master’s thesis, Technical Report UCB//CSD-99-1059, Computer Science

Division, University of California at Berkeley, July 1999.

[Mar00] D. Martin. Vector Extensions to the MIPS-IV Instruction Set Architecture

(The V-IRAM Architecture Manual) Version 3.7.5. Berkeley, CA. March 4, 2000.

Available from http://iram.cs.berkeley.edu/isa.ps as of May 2, 2001.

[MAW01] M. Mneimneh, F. Aloul, C. Weaver, S. Chatterjee, K. Sakallah, T.

Austin. Scalable Hybrid Verification of Complex Microprocessors. Proc. 38th Design

Automation Conference (DAC), University of Michigan, June, 2001.

[PJB99] V.A. Patankar, A. Jain, R.E. Bryant, Formal verification of an ARM processor,

Proceedings Twelfth International Conference on VLSI Design. Jan 1999.

